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On Bottleneck Partitioning of k-ary n-cubes
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Abstract

Graph partitioning is a topic of extensive interest, with applications to parallel processing. In
this context graph nodes typically represent computation, and edges represent communication.
One seeks to distribute the workload by partitioning the graph so that every processor has
approximately the same workload, and the communication cost (measured as a function of
edges exposed by the partition) is minimized. Measures of partition quality vary; in this paper
we consider a processor's cost to be the sum of its computation and communication costs, and
consider the cost of a partition to be the boitleneck, or maximal processor cost induced by the
partition. For a general graph the problem of finding an optimal partitioning is intractable.
In this paper we restrict our attention to the class of k-ary n-cube graphs with uniformly
weighted nodes. Given mild restrictions on the node weight and number of processors, we
identify partitions yielding the smallest bottleneck. We also demonstrate by example that some
restrictions are necessary for the partitions we identify to be optimal. In particular, there exist
cases where partitions that evenly partition nodes need not be optimal.
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1 Introduction

The problem of assigning workload in a parallel system has long been viewed as important, and
in the general case, as intractable. A significant amount of research has addressed the probleln of
finding good, if not optimal, workload mappings; a number of different objective functions have
been used. All relevant objective functions recognize that the quality of both load balance and coin-
munication costs are important. While workload imbalance is generally defined as a large deviation
between the maximum and average load among processors, treatments of communication costs dif-
fer. A common technique is to measure the communication cost as the sum of all communication
induced by the mapping. While this sometimes leads to more tractable treatments (e.g. [8, 12]), it
does not capture the fact that communication can happen in parallel. An alternative formulation is
to assess the sum of computation and communication for each processor, and measure the quality
of the mapping as the maximum processor load, or bottleneck [5, 13]. The bottleneck measure does
not take precedence relationships into consideration, and so is most useful in highly data-parallel
computations where processors typically cycle through computation and communication phases.

In this paper we assume that a very regular graph-a k-ary n-cube[6]-describes the coml)uta-
tion and communication needs of a data-parallel problem. Each node in the graph represents some
piece of computational work, which we assume takes uw time to perform. Each edge (i, j) represents
some implicit communication necessary between nodes i and j; typically such an edge reflects a
data dependency of node i's computation for the present iteration on the result of executing node
j in the previous iteration (and vice-versa). The edges may be viewed as communication that
must occur at the end of an iteration. We desire to partition the graph into p node sets, assigned
one per processor, so as to minimize the bottleneck cost. The problem is not entirely academic.
Several current parallel architectures have communication topologies based on the k-ary n-cube.
The problem of partitioning a communication topology arises, for instance, when one executes a
parallel simulation of traffic on a k-ary n-cube network [7, 1].

The objective of this paper is to show that under mild restrictions on uw and p, the optimal
partition is intuitive, one that equi-partitions the graph into node sets that are internally clustered
as tightly as possible. The main requirement turns out to be that p be large enough relative to the
size of the k-ary n-cube. The central point of interest is that restrictions on u? and p are needed;
while intuitive, our results are not at all immediate. We also point out that previous analyses of
partitioning regular grids differ from the current work in an subtle but important way. It is not
the objective of the paper to give new partitioning algorithms, but to clarify one's intuition about
partitioning k-ary n-cubes.

There are three bodies of work on graph partitioning that bear discussion. The technique of
recursive spectral dissection (e.g., [2]) divides a graph into two pieces, based on an eigenvalue
analysis of a matrix describing the graph connectivity. The algorithm is applied recursively until
p = 2J node sets are defined. Each partition cut is guaranteed to achieve a certain level of load r
balance (not necessarily perfect balance), with a guaranteed upper bound on the number of edges
cut. Spectral dissection may find some of the partitions we identify as optimal (when k is a power
of two), but is not guaranteed to find them1 . Recursive geometric partitioning (e.g. [9]) is similar -
in spirit, but different in details. A graph in I'V is projected onto the unit sphere in ?Z'`+1, and the
projection is stretched to locate the center of mass (approximately) at the sphere's origin. A great
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circle cut of the sphere partitions the node set into two pieces. The technique also guarantees a
certain level of load balance and bounds the number of edges cut. Like spectral partitioning, the
method may find the optimal partitions (in the same special case of k being a power of two), but
also may not. On the other hand, recursive binary dissection [31 (and its extension, parametric
recursive binary dissection [4]) will find the partitions we identify as optimal, when k is a power
of 2. In the case of general graphs there is no such guarantee. The heuristic described in [11] is
shown there to find optimal partitions of N2,,,, and obvious extensions to heuristic described in [101
will find all optimal partitions identified in this paper, provided the correct number of processors
in each dimension are supplied in the problem description.

2 Problem Formulation

A k-ary n-cube Nk,, is a graph with kV nodes, with an edge defined between two nodes i and j
if, in the base-k number system, the expressions of i and j differ in at most one digit, and differ
there (modulo k) by exactly 1. Thus, if i = b,,_lb,,- 2 ... bo is the base-k representation, then in
each dimension j = 1,.. .,n, i shares an edge with iV = b,1-b,,-2 " . (bj + 1) mod k bj 1 .-.. bo and
with i" = b,-j b-2 ." (bj - 1) mod k bj- 1 ... b0 . These edges are said to be in dimension j, and
i' and i" are said to be dimension j neighbors of i. Special cases include rings (Nk,l), hypercubes
(N2,), two and three dimension toruses (Nk,2, Nk,3). It is useful to imagine Nk,,, as a collection of
interconnected rings resident in an n-dimensional space.

A partition of Nk,, into p subdomains is a collection of nonempty node subsets P = {Po,.•., Pp-}.
Abusing usual notation, we'll denote that an edge e has at least one endpoint in Pi by e E Pi, and
define the indicator function I(e, F1) to be one if exactly one of e's endpoints is in Pi, and zero
otherwise. Then we denote the number of external edges in Pi by

Ext(P,) = • I(e, P),
eEP,

denote the number of internal edges as

tnt(Pi) = yZ (1 - l(e, Pj)),
eEPi

and define the cost of Pi as
C!(Pi) = wIPiI + Ext(Pl).

Here we weight the cost of each node by w to reflect the execution cost, where the communication
cost associated with one edge is unity. The cost of P is taken as

B(P) = mnax C(P4).
O<i<p

Given p and u), we wish to find the partition P that minimizes B(P).
A very similar special case of this problem has been studied in the context of partitioning grids

arising from the discretization of domains for the solution of partial differential equations, by Reed
et al. [141. It is instructive to consider the subtle difference in 'the problem specification, because
the conclusions reached differ greatly.

The partitions considered by Reed et al. all tessellate a two-dimensional domain (Nk,2 without
wraparound edges) with a common shape, e.g., rectangles, squars, or hexagons. The comput.,tion
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Figure 1: Hexagon partition in a 2d mesh

to communication ratio of different shapes are analyzed, but the communication cost is taken as
the sum (over all grid points in the subgraph) of the cost of communicating each boundary point.
This may vary from point to point. For instance, Figure 1 illustrates some hexes; point A has two
edges cut, but since the endpoints of both edges are in the same hex, Reed et al. count the cost as
one, not two. Point B has two edges cut, but both of these are counted. With this measure, the
communication cost of a hex is taken as 10 although 14 edges are cut. Shapes like hexagons are
shown to achieve a better computation/communication ratio than do squares. This is interesting,
because in this case our results give general conditions under which squares are optimal, a significant
difference due entirely to a minor change in the model of communication costs.

Reed et al.'s measure makes sense in its presented context where a specific numerical algorithm
calls for the exchange of boundary value grid points. In other contexts unique edges from a node
represent unique pieces of information, and the cost function we adapt is appropriate. We are aware
of algorithms in computational fluid dynamics, for instance, where there is a unique "flow" along
every edge in a mesh. Most of the grid partitioning community counts cut edges.

While our results identify general conditions under which equi-partitions are optimal for the
bottleneck measure, it is worthwhile noting that this need not always be the case. An example
that partitions a 6 x 6 mesh into 3 partition elements is shown in Figure 2. Here the unbalanced
partition has bottleneck cost 28w + 10, the balanced partition has bottleneck cost 12w + 12. The
unbalanced partition is better whenever u, < 6/19. This example illustrates the tension between
partitioning to minimize computational imbalance and communication overhead. Our goal is find
general conditions under which obvious equi-partitions are optimal with respect to the bottleneck
Alletric.
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Unbalanced partition has Balanced partition has

cost 28w+ 12 cost 12w+ 14

Figure 2: Equal sized partitions need not be optimal

3 Preliminaries

We first establish some preliminary results. These depend on k in a way that is captured by defining
Tk = I for k = 2, and Tk = 2 for k > 2.

Observation 1 Let A be any set of nodes in Nk,,,. If JAl = in and Int(A) = v, then Ext(A) =
Tkmn - 2v.

Lemma 2 Let A be any set of nodes in Nk,,,, k $ 3, with IAI = m. Then Int(A) <_ (inlogm)/2.
This bound is achieved when in = 2i for some j < n.

Proof: We induct on m. The base case of rn = 1 is trivially satisfied. Suppose then that the claim
is true for any set of size m - 1 or smaller, and choose any node set A with IAI = m. Choose any
two nodes x and y in A, consider their indices expressed in base-k notation and find a d4mension
j in which their indices differ in that notation. Let a and b be the dimension j index for x and y
respectively. Viewing these indices as lying on a "ring" 0 - 1-2 - ... - (k - 1) - 0, cut the ring
into two sequences of length 2 or greater, one of which contains a, and one of which contains b.
Partition A into sets Xa and Xb, with Xa comprised of all nodes whose indices in dimension j lie
in the same range as a's, and Xb = A - Xa. Let u and in - u be the number of nodes in X and
Y respectively. By the induction hypothesis, Xa has no more than (ulogu)/2 internal edges, and
Xb has no more than ((?n - u) log(mn - u)/2) internal edges. If k = 2 or if k > 4 there can be no
more than min{u, m - u} edges between X, and Xb, because any such edge has to connect nodes
whose indices differ only in dimension j, and which must be adjacent on the ring we partitioned.
Any node in either set can have at most one edge to the other set. It follows that A can have no
more than

B,,(u) = (ulogu)/2 + ((in - u)log(m - u))/2 + min{u,in - u}.

Now the function
f,,,(q) = (qlogq)/2 + ((in - q)log(m - q))/2 + q

defined over q E [0, in/2] completely describes the bound as a function of q = min{u, ?n - u}.
Considered as a continuous function of q, analysis of derivatives reveals f,,(q) to be convex over
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[0, m/21, and is hence maximized at the en(lpoint q = rn/2. Simple algebra shows that B,,,(u) <
fr(m/2) = (mlog m)/2, completing the induction. Finally, observe that the same argument holds
in the case of k = 2 by relaxing the requirement that the dimension j ring be cut into lengths of
2 or greater-there is only one cut possible, and it is still possible for a node in X, or Xb to have
at most one edge between X,, and Xb. Finally, observe that when in = 2J, j < n, the bound is
achieved by any set A that forms a j-dimensional hypercube in Nk,,,. •

Another bound is also useful. We will say that set A is nowhere completed if A contains no
completed rows, i.e., no dimension j for which there are k nodes whose base-k indices all agree
except in dimension j.

Lemma 3 Let A be any set of nodes in Nk,,, k > 2, with AI = in such that A is nowhnr(
completed. Then Int(A) < n(m - 7n(0`-1 )/.) This bound is achieved whenever k is divisible by q,
and in = (k/q)".

Proof: By observation 1, maximizing Int(A) is equivalent to minimizing Ext(A); we seek a set A'
with in nodes minimizing Ext(A'). A' must be connected, otherwise we could always find a node set
with smaller external edge count by translating a connected component linearly through Nk,,, until
it eliminates one or more external edges by becoming adjacent to another connected component.
Now represent the set as a "Manhattan polyhedron" (every face is parallel to some axis) formed by
a collection of unit cubes in RZ", each cube representing one node, and two cubes sharing a face if
there is an edge between the nodes they represent. Figure 3 illustrates this construct. The number
of external edges is thus equal to the number of exposed faces-the surface area of the Manhattan
polyhedron. Now the surface area 5,,. of any Manhattan polyhedron in 1?" is at least as large as
that, say .5,, of the smallest "orthogonal polyhedron" (a rectangular solid in 1?V) that completely
encloses it. Let v > in be the volume of this orthogonal polyhedron. The polyhedron with volume
v forming a perfect cube in 1?" has surface area S, < .5,. But the orthogonal polyhedron with
volume in forming a perfect cube in TV' has smaller surface area yet. This minimal surface area
is 2nrn(7-l)/?* < Ext(A). The claimed bound on Int(A) follows from observation 1. Furthermore,
whenever k is divisible by q, and in = (k/q)' we can construct a (k/q) x (k/q) x ... (k/q) cube
with exactly in nodes, in which case the bounds are exact. I

Our optimality results hold when the number of nodes in each partition set, in = k0/p, is
small enough to ensure that the optimal partition sets are nowhere completed. Since some internal
edges are gained by forming a completed row (due to wrap-around), simple extensions to geometric
arguments like those of Lemma 3 are not sophisticated enough to analyze these tradeoffs. However,
a simple argument shows that for sets of size in < k, the configuration minimizing external edges
need not have any completed rows.

Lemma 4 For all k > 2" and n > 2 there exists a nowhere completed subset of k nodes in Nk,,

with minimal external edges.

Proof: When k > 2" (and n > 2), the single configuration of k nodes that completes a row has
exactly 2k(n - 1) external edges, whereas the proof of Lemma 3 shows that the set of k no(des which
is as cubelike as possible has no more than 2nk("'-1)/' external edges. Now 2nk('-)/"' < 2k(n - 1)
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Node set in 3d cube Manhattan polyhedron
External edges are highlighted Exposed faces represent external edges

Figure 3: Geometric interpreta:tion of a connected node set

if and only if (I/k) < (1 - l/n)?L. But 1/k < 0.25 for all k > 4, and (1 - 1/n)t' increases monoton-
ically in n (converging to e-1) and (1 - 1/2)2 = 0.25. 0

Proofs that optimally configured sets of size in > k may be nowhere completed are beyond the
scope of this note. However, we can put a lower bound on Ext(A) for JAI > k, and analyze the
relative error of this bound.

Lemma 5 Let k > 4. For all i > 2" and n > 2, let E,, ,.. be the minimal value of Ezt(A) among
all node sets A with JAI = m. Then

2nm(,L1)/" n - - < E,,, <• 27im(?-l)/n.

Proof: The upper bound follows from the observation that among all sets A that are nowhere
completed, 2nm("•-)/" is an upper bound on Ext(A), and thus on E,,,,,. The lower bound follows
by subtracting from this the maximum number of external edges that may be deleted by completing
a row-two per possible row. U

Now the relative difference between the upper and lower bound is 1 -in 1 /"/(nk), which increases
in in. Values of in we are most interested in derive from equi-partitions where every dimension is
sliced identically. Let q divide k evenly, and let in = (k/q)". In this case the relative difference is
I - 0.5/(qn). Consequently the bounds become tighter with increasing dimension size, n, and with
decreasing partition size set (k/q)'.

Let A be any set of nodes with JAI = in. From the observations above we see that

C1(m) = wm + Tkmnn - mlogm < C(A) for all m = 1,2,--,

and
Cj(mn) = win + Tkmzn - n(mn - n(-)/`)< C(A) , for all in = 1,2,..., k.

Observe that C2(in) is monotone non-decreasing, as d-•C 2(rn) > 0. Another result describes the
relationship between C, and C2.
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Lemma 6 For all in E [1, 2"], C 1(7n) > C. (7 n). For all 7n > 2 ", C (in) •< C 2 (7n).

Proof: Analysis of derivatives with respect to in shows that C'(I) _> (,(1I); since (:(i() = C•(2I)
we infer that initially, for x > 1, Cl(X) > C 2 (x). Since both functions are continuous this domi-

nance is maintained until the first ?n such that Cl(m) = C2 (m). Algebra shows that the unique

solution in > 1 is in = 2". At this point C'(2") _< (72(2"), and the dominance reverses. U

4 Analysis of Cost Function

Since both Cl(m) and C 2(m) are lower bounds on C(m), the function Ca(7) = max{(C1 (m), C 2(7n)}

is a better composite bounding function. Previous observations have established that

6-3(n) f Ci (m) for m < 2"
/ C2(7n) for ?n > 2 "

Furthermore, it is not difficult to show that C3 (m) is concave over ?n E [1,2"], and that C3 (m) is

increasing over in E [2", k"]. Furthermore we also know that when k > 4, C3 (in) is a lower bound

on the cost of node set A with JAI = in < k elements.

Our strategy now is to identify values of in < k for which it is possible to partition Nk,,, into

k/in isomorphic subgraphs, such that C(m) = (7.3(in). Since C'3 (m) is known to be increasing for
in > 2 ", we determine conditions under which Ca(m) is increasing over [1, 2 "11. Considered as a

continuous function, the first derivative of C3(mn) for m E [1, 2n] is

dC 1 ((n) = w- + TkAi - login - 1/In 2.
din

This function decreases in 7n, and so will be non-negative over [1, 2"1 if it is non-negative at in = 2".
The latter condition is satisfied whenever w + n(T& - 1) > 1/In 2. Thus

Lemma 7 If w > 1/In 2 or if k > 2 and n > 1, then C3(m) is everywhere monotone non-decreasing

over [1, kn].

Monotonicity of C 3 (m) can be exploited, for if node sets Po,..., Pp- 1 have sizes 711 0,..., M,
then max{C.3 (mno),..., C3 (inm._)} is minimized when the node sets have equal sizes. To complete

the analysis we simply identify conditions on p that ensure that . 3(m) = C(Pi) for all i = 0,..., p-
1, and that Nk,,, can be partitioned into isomorphic node sets with this cost. Such partitions must
be optimal.

Theorem 8 The following are optimal partitions of Nk,, with respect to the bottleneck cost.

"* If some condition of Lemma 7 is satisfied, k is even, and p = k"/2j with j < n, then Nk,,,

may be partitioned into isomorphic hypercubes of dimension j.

"* If some condition of Lemma 7 is satisfied, their is intcger q such that (k/q)h/'1 is integer and

p = (k/q)("-1)/V, then Nk,,, may be partitioned into isomorphic blocks of shape (k/q)1/1 x
(klq)/'I x ... x (k/q)'/".
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The partitions identified by this theorem are quite intuitive. They divide NO,, uniformly into
equally sized sets of nodes, and the nodes in a set are clustered tightly. If the number of nodes in the
set is less than 2"L, the nodes formi a hypercube of some dimension no greater than n. If the number
of nodes exceeds 2 " (but is no greater than k). they form a perfect cube in an n-(limensional space.
However, while these optimal partitions are intuitive, we have already seen that perfectly balanced
partitions need not be optimal. It is also noteworthy that the requirement on U? for optimality
disappears when p is small enough (p < k("-')/"), or when k > 2.

A final result addresses the fact that restricting the number of nodes per processor to k or fewer
may be overly conservative. For k < in < (k/2)" we can bound the deviation irom optimal of cubic
equi-partitions.

Lemma 9 Let q divide k evenly, and consider the partitioning into adjacent blocks of size (k/q) x
... (k/q). Then the bottleneck cost is no more than 100/(nq)% larger than optimal.

Proof: Using in = (k/q) Lemma 5 shows that the increase in external communication cost of the
cubic partition is no more than l00/(nq)%. U

5 Conclusions

k-ary n-cubes are regular graph structures that are found in numerous contexts, especially in
descriptions of communication networks. Partitioning of such graphs is a problem that arises in
network design, and in parallelized simulation of such networks. This paper examines the problem
of identifying optimal partitions of Nk,,, with respect to the bottleneck metric. Our investigations
identify two points of interest. First, existing work on partitioning regular graphs for parallel
processing has used a subtly different measure of communication, which leads to very different
results than ours. Secondly, while the partitions we identify as optimal are intuitive, we show
by example that equi-partitions need not always be optimal. Our results then help to delineate
problems with intuitive optimal partitions from those with non-intuitive optimal partitions.

Open remaining problems that we are pursuing include dealing more conclusively with the effect
of completing rows, and with determining the minimal value of v) ensuring that equi-partitions are
optimal.
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